Large-scale screening of zeolite structures for CO2 membrane separations.
نویسندگان
چکیده
We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of over 87,000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2 adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database outperform the best known zeolite by a factor of 4-7. Finally, we have identified a completely different optimal set of zeolite structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N2 is passed through a membrane.
منابع مشابه
Selective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes
In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...
متن کاملNano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation
A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...
متن کاملNano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation
A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...
متن کاملFunctionalized Polymeric Membranes for CO2 Capture
Reducing CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of membrane materials with high separation performance ...
متن کاملTheoretical screening of zeolites for membrane separation of propylene/propane mixtures
In this paper, the performances of potential zeolite membranes were estimated by the Maxwell-Stefan model and then they were placed in Robeson plot of propylene/propane separation. Additionally, the effects of feed pressure and the mole fraction of propylene in the feed on both the propylene permeabilities and membrane permselectivities were investigated. The results showed that zeolite membran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 135 20 شماره
صفحات -
تاریخ انتشار 2013